Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 286, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493143

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS: In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1ß and in the post-traumatic OA model. RESULTS: In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS: These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.


Assuntos
NF-kappa B , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Osteoartrite/terapia , Osteoartrite/patologia , Ondas Ultrassônicas , Inflamação/patologia , Autofagia , Condrócitos , Interleucina-1beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
J Orthop Surg Res ; 19(1): 49, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195597

RESUMO

BACKGROUND AND AIM: Post-traumatic osteoarthritis (PTOA) is a subtype of osteoarthritis (OA). Exercise may produce and release the myokine irisin through muscle fiber contraction. However, the effect of exercise-promoted irisin production on the internal interactions of the muscle-bone unit in PTOA studies remains unclear. METHODS: Eighteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). The PTOA model was established by transection of anterior cruciate ligament (ACLT) and destabilization of medial meniscus (DMM). After 4 weeks of modeling, the PTOA/TW group underwent treadmill exercise (15 m/min, 30 min/d, 5 d/ week, 8 weeks), and the other two groups were free to move in the cage. Evaluation and correlation analysis of muscle, cartilage, subchondral bone and serological indexes were performed after euthanasia. RESULTS: Eight weeks of treadmill exercise effectively alleviated the trauma-induced OA phenotype, thereby maintaining cartilage and subchondral bone integrity in PTOA, and reducing quadriceps atrophy and myofibril degradation. Exercise reversed the down-regulated expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and fibronectin type III structural domain protein 5 (FNDC5) in muscle tissue of PTOA rats, and increased the blood irisin level, and the irisin level was positively correlated with the expression of PGC-1α and FNDC5. In addition, correlation analysis showed that irisin metabolism level was strongly negatively correlated with Osteoarthritis Research Society International (OARSI) and subchondral bone loss, indicating that irisin may be involved in cartilage biology and PTOA-related changes in cartilage and subchondral bone. Moreover, the metabolic level of irisin was strongly negatively correlated with muscle fiber cross-sectional area (CSA), Atrogin-1 and muscle ring-finger protein-1(MuRF-1) expression, suggesting that irisin may alleviate muscle atrophy through autocrine action. CONCLUSION: Treadmill exercise can alleviate the atrophy and degeneration of muscle fibers in PTOA rats, reduce the degradation of muscle fibrin, promote the expression of serum irisin, and alleviate the degeneration of articular cartilage and subchondral bone loss in PTOA rats. These results indicate that treadmill exercise can affect the process of PTOA by promoting the expression of myokine irisin in rat muscle-bone unit.


Assuntos
Doenças Ósseas Metabólicas , Osteoartrite , Ratos , Animais , Fibronectinas , 60635 , Ratos Sprague-Dawley , Fibras Musculares Esqueléticas , Osteoartrite/etiologia , Atrofia
3.
J Inflamm Res ; 16: 5819-5833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076332

RESUMO

Intervertebral disc degeneration (IDD) is considered as a dominant contributor to low back pain (LBP), causing severe pain, limited range of lumbar motion, physical dysfunction, and restriction of social activity. However, the specific pathological mechanisms underlying IDD remain elusive, and effective strategies to delay the pathogenesis of IDD are still unclear and limited. In recent years, some studies have found that nuclear factor erythroid 2-related factor 2 (Nrf2), an important antioxidant transcription factor, may play crucial roles in the pathogenesis and progression of age-related diseases including IDD. Nrf2 can maintain redox homeostasis and protecting nucleus pulposus (NP) cells against oxidative stress, inflammatory response, extracellular matrix (ECM) catabolism, cell senescence and cell death involving in the progression of IDD. In this review, we aim to systematically describe the vital roles and pathological mechanism of Nrf2 signaling axis in the pathogenesis of IDD, which may put forward potential therapeutic strategies for the prevention and treatment of IDD by targeting Nrf2.

4.
Life Sci ; 332: 122020, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579836

RESUMO

AIMS: The major pathological mechanisms of osteoarthritis (OA) progression include inflammation, autophagy, and apoptosis, etc. Moderate mechanical strain and exercise effectively improve chondrocyte degeneration by reducing these adverse factors. Mitofusin 2 (MFN2) is a crucial regulatory factor associated with inflammation, autophagy and apoptosis, and its expression is regulated by exercise. This study aims to elucidate the effects of moderate mechanical strain and exercise on MFN2 expression and its influence on OA progression. MAIN METHODS: Destabilization of the medial meniscus (DMM) surgery was performed on rats to induce an OA rat model. Subsequently, adeno-associated virus (overexpression/knockdown) intra-articular injection or moderate treadmill exercise was administered to evaluate the effects of these treatments on MFN2 expression and OA progression. Overexpressed plasmids and siRNA vectors were used to regulate MFN2 expression in chondrocytes. An inflammatory degeneration cell model was generated by IL-1ß stimulation. Moderate mechanical strain was applied to MFN2-overexpressing cells to explore their interactions. KEY FINDINGS: MFN2 overexpression aggravated inflammation by activating the NF-κB and P38 pathways and induced excessive autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby causing chondrocyte apoptosis and metabolic disorder. Moderate mechanical strain partially reversed these adverse effects. In the DMM rat model, MFN2 overexpression in articular cartilage exacerbated OA progression, whereas MFN2 knockdown and treadmill exercise alleviated cartilage degeneration, inflammation, and mechanical pain. SIGNIFICANCE: MFN2 is a critical factor mediating the association between inflammation and excessive autophagy in OA progression. Moderate mechanical strain and treadmill exercise may improve OA through downregulating MFN2 expression. This study may provide a theoretical basis for exercise therapy in OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ratos , Autofagia , Cartilagem Articular/patologia , Condrócitos/metabolismo , Inflamação/patologia , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Condicionamento Físico Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...